top of page

Satellites for Deep Underground Oil Detection

  • Writer: Kommu .
    Kommu .
  • 3 days ago
  • 2 min read

Here’s a categorized list of satellites and next-gen technologies for detecting deep underground oil, gas, and water, based on the search results and industry applications:

Satellites for Deep Underground Oil Detection

Satellite/System Name

Technology Used

Company/Organization

Use Case

Source/Reference

GRACE

Gravity Gradient Tensor (GGT)

NASA/DLR

Predicts petroleum deposits by analyzing gravity anomalies over regions like Iraq.

WorldView-3

Hyperspectral Imaging (16 bands)

Maxar/DigitalGlobe

Detects surface oil seeps and geological features linked to subsurface reservoirs.

TerraSAR-X

Synthetic Aperture Radar (SAR)

Airbus/ST Engineering

Identifies subsurface oil reservoirs via surface deformation and geohazard mapping.

O3b mPOWER (MEO)

High-throughput data analytics

SES

Supports AI-driven seismic data processing for oil exploration.

Satellites for Deep Underground Gas Detection

Satellite/System Name

Technology Used

Company/Organization

Use Case

Source/Reference

Sentinel-2

Multispectral Imaging + AI

ESA

Detects methane leaks (200–300 kg/h) using deep learning on open-source data.

GHGSat-C1

Hyperspectral Sensors

GHGSat

Tracks methane emissions from oil/gas fields with high spatial resolution.

Dove Satellites

3m-resolution Imaging

Planet Labs

Monitors pipeline leaks (via PipeWATCH) by detecting vegetation stress and soil changes.

WorldView-3

SWIR Band (2.1–2.3 μm)

Maxar/DigitalGlobe

Identifies hydrocarbon signatures in infrared for gas reservoir mapping.

Satellites for Deep Underground Water Detection

Satellite/System Name

Technology Used

Company/Organization

Use Case

Source/Reference

GRACE Follow-On

Gravity Field Mapping

NASA/GFZ

Monitors groundwater depletion by measuring changes in Earth’s gravity.

SWOT

KaRIn Radar Interferometry

NASA/CNES

Maps surface water elevation to infer underground aquifers via topographic modeling.

ASTERRA (Utilis)

L-band SAR + AI Algorithms

ASTERRA

Detects underground water leaks (0.5 L/min) by analyzing soil moisture anomalies.

Landsat 8/9

NDWI/MNDWI Indexing

NASA/USGS

Uses spectral indices to map groundwater-dependent ecosystems and aquifer recharge zones.

Next-Generation Satellite Technologies

Technology

Satellite/System Name

Company/Organization

Application

NISAR

L+S-band SAR

NASA/ISRO

High-resolution groundwater monitoring (launching 2024) via subsurface deformation tracking.

Tiger-1 (LEO)

3GPP NB-IoT Wake-Up

OQ Technology

Energy-efficient IoT sensors for real-time groundwater monitoring.

WorldView Legion

30cm Multispectral Imaging

Maxar

Advanced spectral bands for oil/gas seepage and aquifer mapping.

Sentinel-2C/D

Enhanced Multispectral

ESA

Daily global methane monitoring with improved detection thresholds.

Key Innovations

  • AI Integration: Deep learning models (e.g., Sentinel-2 methane detection) enhance sensitivity to subsurface leaks.

  • SAR Advancements: ASTERRA’s L-band SAR and NISAR’s dual-frequency radar improve underground water leak detection.

  • Hyperspectral Sensors: WorldView-3’s SWIR bands enable direct detection of hydrocarbon signatures.

For detailed methodologies, refer to the cited sources in the "Source/Reference" column.

Add to follow-up

Check sources

Citations:

  1. https://www.nature.com/articles/s41598-023-32054-0

  2. https://unicamp.br/en/unicamp/ju/664/pesquisa-utiliza-satelite-para-detectar-petroleo-na-superficie

  3. https://www.satimagingcorp.com/applications/energy/exploration/oil-exploration/

  4. https://www.nature.com/articles/s41467-024-47754-y

  5. https://netl.doe.gov/node/4103

  6. https://www.jpl.nasa.gov/news/next-generation-water-satellite-maps-seafloor-from-space/

  7. https://www.ripublication.com/acst17/acstv10n6_37.pdf

  8. https://open.metu.edu.tr/handle/11511/44705

  9. https://inspenet.com/en/articulo/the-technology-of-exploration-40/

  10. https://www.stantec.com/en/ideas/content/blog/2019/how-satellite-technology-can-monitor-buried-pipelines-and-find-leaks-more-quickly

  11. https://pure.qub.ac.uk/files/539613784/SPIE_ch_final.pdf

  12. https://www.jpl.nasa.gov/news/nasa-finds-new-way-to-monitor-underground-water-loss/

  13. https://asterra.io/about/

  14. https://www.mdpi.com/2072-4292/13/6/1132

  15. https://energy.mit.edu/news/finding-oil-natural-gas-deep-underground/

  16. https://www.quantumsensors.org/technology/seeing-underground

  17. https://eos.org/articles/leveraging-satellite-sensors-for-oil-spill-detection

  18. https://jpt.spe.org/satellites-can-enhance-oil-spill-detection-and-consequence-management

  19. https://www.esa.int/Applications/Connectivity_and_Secure_Communications/Satellites_map_the_global_flow_of_oil

  20. https://www.mdpi.com/2076-3417/12/8/4016

  21. https://www.viridiengroup.com/expertise/satellite-mapping/oil-spill-detection-and-monitoring

  22. https://www.sciencedirect.com/science/article/abs/pii/S0025326X22008141

  23. https://www.bsee.gov/sites/bsee.gov/files/osrr-oil-spill-response-research/161aq.pdf

  24. https://blog.response.restoration.noaa.gov/index.php/noaas-eyes-sky-how-satellite-technology-pioneered-during-deepwater-horizon-patrols-americas-oceans

  25. https://www.sciencedirect.com/science/article/abs/pii/S0920410519306400

  26. https://www.bloomberg.com/news/features/2021-04-17/the-tech-tracking-down-methane-leaks

  27. https://spottitt.com/industry-news/utilizing-satellite-data-to-mitigate-pipeline-failures-and-risks/

  28. https://ngpcap.com/insights/the-next-generation-of-earth-observation-and-the-great-convergence-with-ai

  29. https://futures.kapsarc.org/sensors-in-the-sky-satellite-technology-is-a-promising-tool-to-measure-emissions/

  30. https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/Methane_CGEP_Commentary_v3.pdf

  31. https://geoexpro.com/remote-sensing-underground/

  32. https://gps-dmr.com/sputnikovaya-razvedka.html

  33. https://www.sciencedirect.com/science/article/abs/pii/S175058362030606X

  34. https://inspenet.com/en/articulo/the-technology-of-exploration-40/

  35. https://www.mdpi.com/1424-8220/22/14/5322

  36. https://www.sciencedirect.com/science/article/pii/S2589915524000051

  37. https://www.mdpi.com/2073-4441/14/4/565

  38. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023WR035785

  39. http://www.gisandbeers.com/RRSS/Publicaciones/Teledeteccion-aplicado-a-aguas-subterraneas.pdf

  40. https://appliedsciences.nasa.gov/sites/default/files/2021-03/Lake_Webinar_Week1_v6.pdf

  41. https://www.globalwaterstorage.info/en/a-new-way-to-quantify-groundwater-decline-from-space

  42. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022WR032219

  43. https://www.hydropower.org/case-study/satellite-reservoir-management

  44. https://www.sciencedirect.com/science/article/pii/S0305440324001213

  45. https://www.mdpi.com/2072-4292/15/8/2015

  46. https://www.mdpi.com/2072-4292/15/24/5740

  47. https://phys.org/news/2024-09-groundwater-accurately-satellites-remote-platform.html

  48. https://www.esri.com/about/newsroom/arcwatch/mineral-exploration-in-the-hyperspectral-zone

  49. https://www.sciencedirect.com/science/article/pii/S0301479721014869

  50. https://www.nature.com/articles/s41467-024-50334-9

  51. https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2565/

  52. https://satpalda.com/pipeline-monitoring-and-surveillance-using-geospatial-approach/

  53. https://gasoutlook.com/analysis/satellites-a-game-changer-for-methane-leak-detection/

  54. https://www.anglianwater.co.uk/news/anglian-water-uses-satellites-to-help-detect-regions-hardest-to-find-leaks-saving-millions-of-litres-of-precious-water-for-the-environment/

  55. https://www.youtube.com/watch?v=zC0w-DrWGcY

  56. https://hess.copernicus.org/preprints/hess-2023-215/


Recent Posts

See All

Comments


bottom of page